
1/38

Background & Motivation Proposed Model Extensions Computational Results Conclusions References

A MIP-Based Dual Bounding Technique for the
Irregular Nesting Problem

Ryan J. O’Neil Karla Hoffman

Systems Engineering & Operations Research
George Mason University

IFORS: The Art of Modeling
July 13-18, 2014



2/38

Background & Motivation Proposed Model Extensions Computational Results Conclusions References

The Irregular Nesting Problem

Given a set of 2D objects, arrange them such that:

No two objects overlap.

Required length is minimized.
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Assumptions

All objects are convex polygons.

We are “nesting” these objects into a rectangle of:

Fixed width (W ).
Potentially infinite length (L).

We do not allow rotation.
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Fischetti-Luzzi Model: Decision Variables

The model used in Fischetti and Luzzi (2009) and refined in
Alvarez-Valdes, Martinez, and Tamarit (2013) has two
components. The first is a Linear Program (LP) that minimizes
the length of the outer region.

Our decision variables are the length of the outer region, L, and an
offset for each polygon. For instance, polygon A, shown in red, is
offset by the linear decision variables (xa, ya).
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Fischetti-Luzzi Model: Parameters

The model takes as input a fixed width, W > 0, and a clockwise
set of vertex offsets for each polygon. Polygon A, shown in red,
has the offsets Pa = {(0, 0) , (0, 1) , (1, 1) , (1, 0)}.

We’ll need the maximum x and y offsets for each polygon. In this
case xmax

a = ymax
a = 1.
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Fischetti-Luzzi Model: Overlap Elimination

The model eliminates overlap using the No-Fit Polygon (NFP).
This is drawn by holding one object stationary and tracing another
around it so that they touch but do not overlap. If
(xa − xb, ya − yb) 6∈ NFPab, then A and B do not overlap.
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Fischetti-Luzzi Model: Overlap Elimination

We enforce these offset relationships by slicing up the regions
around the NFP as prescribed in Alvarez-Valdes, Martinez, and
Tamarit (2013).

There are 5 regions outside NFPab. A binary variable associated
with each region turns on and off its constraints.
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Fischetti-Luzzi Model: Overlap Elimination

Consider region S4 for NFPab. If (xa − xb, ya − yb) ∈ S4, then the
following constraints must be active.

xa − xb ≤ −1

−1 ≤ ya − yb ≤ 1

If we have binary variables b1, . . . , b5 such that
∑5

i=1 bi = 1, then
we can write the constraints for S4 as:

xa − xb ≤ −1 + M (1− b4)

ya − yb ≥ −1−M (1− b4)

ya − yb ≤ 1 + M (1− b4)

Where M is an appropriately large value. We add constraint sets
like this for each region and each pair of polygons.
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Fischetti-Luzzi Model

We formulate the Fischetti-Luzzi model as follows.

min L
s.t. xp + xmax

p ≤ L ∀ p
yp + ymax

p ≤W ∀ p
(xp − xq, yp − yq) 6∈ NFPpq ∀ p < q
xp, yp ≥ 0 ∀ p

The overlap elimination constraints are what makes this difficult.
They add a binary variable and big-M for every edge for every pair
of polygons!
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Motivation

The Fischetti-Luzzi model grows in complexity too quickly to prove
optimality for large numbers of objects.

Very effective heuristic techniques exist that can generate good
solutions for large nesting problems, but these lack optimality
bounds.

We would like a model that can generate dual bounds for the INP
at low cost. In this talk we present preliminary results for ongoing
research in that direction.
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Approximating Polygons with Chebyshev Circles

One option is to replace the polygons with simpler objects. Fasano
(2013) suggests approximating them with circles.

We replace polygons A and B with their maximum inscribed
Chebyshev circles shown above. These have centers(
xa + cxa , ya + cya

)
and

(
xb + cxb , yb + cyb

)
and radiuses ra and rb,

respectively. We can now add an overlap elimination constraint:∥∥(xa + cxa , ya + cya )−
(
xb + cxb , yb + cyb

)∥∥
2
≥ ra + rb

But this is non-convex, so we cannot use it for a dual bound.
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Approximating Polygons with L1-Norm Balls

Alternatively, we can approximate polygons with L1-norm balls.

We can eliminate overlap for these relaxations using mixed-integer
linear constraints, where dx , dy ≥ 0 and bx , by ∈ {0, 1}.

dx ≤ (xb + cxb )− (xa + cxa ) + Mbx

dy ≤
(
yb + cyb

)
− (ya + cya ) + Mby

dx ≤ (xa + cxa )− (xb + cxb ) + M (1− bx)

dy ≤ (ya + cya )−
(
yb + cyb

)
+ M (1− by )

dx + dy ≥ r1 + r2
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Dual Bounding Model

Thus our relaxed “dual bounding” model (in the sense of bounding,
not duality), where (cxp , c

y
p ) is the center of the maximum inscribed

L1-norm ball of polygon p with respect to its offset (xp, yp), is:

min L
s.t. xp + xmax

p ≤ L ∀ p
yp + ymax

p ≤W ∀ p
dpq
x ≤

(
xq + cxq

)
−
(
xp + cxp

)
+ Mbpqx ∀ p < q

dpq
y ≤

(
yq + cyq

)
−
(
yp + cyq

)
+ Mbpqy ∀ p < q

dpq
x ≤

(
xp + cxp

)
−
(
xq + cxq

)
+ M

(
1− bpqx

)
∀ p < q

dpq
y ≤

(
yp + cyp

)
−
(
yq + cyq

)
+ M

(
1− bpqy

)
∀ p < q

dpq
x + dpq

y ≥ rp + rq ∀ p < q
xp, yp ≥ 0 ∀ p
bpqx , bpqy ∈ {0, 1} ∀ p < q
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Dual Bounding Model: Trade-Off

Replacing polygons with L1-norm balls allows a certain amount of
overlap in the optimal solution. It also significantly reduces the
number of binary variables. A couple examples:

Fischetti-Luzzi Model Dual Bounding Model
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Dual Bounding Bisection Model

We can refine our dual bounding model by eliminating more
overlap among the polygon pairs. One option:

Bisect each polygon along the line intersecting its centroid
and its closest point on the exterior of the polygon.

Compute the L1-norm ball for each sub-polygon.

Add overlap elimination constraints as before, considering the
sub-polygons paired with our original polygon centers.
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Dual Bounding Subdivision Model

Another option:

Compute the centroid of each polygon.

Subdivide each polygon by connecting the centroid to the
midpoint of each edge.

Compute the L1-norm ball for each sub-polygon.

Add overlap elimination constraints as before, considering the
sub-polygons paired with our original polygon centers.
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Bisection & Subdivision: Trade-Off

Bisection multiplies the number of binary variables in our model by
2. Subdivision multiplies them by 2 × the number of edges.

Bisection:

Subdivision:
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Successive Approximation Models

We can start with either our “dual bounding bisection” or “dual
bounding subdividision” models and improve them further using
solver callbacks.

Formulate the model as before. When a new solution is found, do
the following:

For every pair of polygons, use their NFP to test for overlap.

If they do, compute the overlapping region’s L1-norm ball.

Add cuts to the model that eliminate this overlap.

Eliminating successively smaller amounts of overlap will eventually
discover the optimal layout. But we pay a price. Each cut requires
the addition of two binary variables.
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Methodology

We run a series of test cases containing increasing numbers of
convex polygons through each model. The solver is interrupted
after an hour of computation, or when an optimal solution is found.
We record bounds and incumbent solutions as they are discovered.

Software & hardware specifications:

MIP Solver: Gurobi v5.6

Geometry: Generic Polygon Clipper (GPC) v2.32

Machine: 4-core Intel i7 @ 2GHz, 8 GB RAM, Windows 7

Branching priority on binary variables corresponds to polygon size.
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Test Instance: Fujita (12 misc objects)

This instance contains 12 convex polygons from Fujita (1993).

Fischetti-Luzzi Model Output Dual Bounding Model Output
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Test Instance: Fujita (12 misc objects)
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Test Instance: Fujita (12 misc objects)
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Test Instance: O’Neil (12 diamonds)

This instance contains 12 diamonds. In this case, the dual
bounding model converges to the same solution as the
Fischetti-Luzzi model.
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Test Instance: O’Neil (12 diamonds)



25/38

Background & Motivation Proposed Model Extensions Computational Results Conclusions References

Test Instance: O’Neil (12 diamonds)
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Test Instance: O’Neil (12 misc objects)

This instance contains 12 convex polygons.

Fischetti-Luzzi Model Output Dual Bounding Model Output
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Test Instance: O’Neil (12 misc objects)
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Test Instance: O’Neil (12 misc objects)
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Test Instance: O’Neil (14 misc objects)

This instance contains 14 convex polygons.

Fischetti-Luzzi Model Output Dual Bounding Model Output
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Test Instance: O’Neil (14 misc objects)



31/38

Background & Motivation Proposed Model Extensions Computational Results Conclusions References

Test Instance: O’Neil (14 misc objects)
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Test Instance: O’Neil (16 misc objects)

This instance contains 16 convex polygons.

Fischetti-Luzzi Model Output Dual Bounding Model Output
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Test Instance: O’Neil (16 misc objects)
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Test Instance: O’Neil (16 misc objects)
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Time to Final Dual Bound

Time in seconds to converge to its final dual bound or optimal
solution and the gap associated with that solution, per model and
test instance. Solver is interrupted after an hour.

Fischetti-Luzzi Dual Bounding
Test Instance Time Gap Time Gap
Fujita (12 misc) 295s 0% 95s 0%
O’Neil (12 diamonds) 260s 44.4% 2020s 33.3%
O’Neil (12 misc) 3600s 8.9% 2560s 0%
O’Neil (14 misc) 3330s 15.7% 451s 4.6%
O’Neil (16 misc) 3600s 20.9% 3065s 4.2%

Note: These models converge to different solutions.
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Conclusions

In most cases, the dual bounding model tracks closely with
the Fischetti-Luzzi during the first several seconds. It then
converges to a bound and stays there. The Fischetti-Luzzi
model continues to improve its dual bound.

The models that use bisection, subdivision, and successive
approximation improve that bound slightly, but not
significantly.

In the diamond packing test case, the dual bounding model
represents the same problem with fewer binary variables and
outperforms the Fischetti-Luzzi model.

Without improvements in performance, the only general
advantage of the dual bounding model is that it provides a set
of polygon offsets corresponding to its bound.
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Future Work

Investigate incorporating a separation algorithm based on that of
Gomes and Oliveira (2006) or using one based on the NFP.

The example below uses a simple NFP-based approach. There are
obviously better ways to perform separation.

Dual Bounding Output After Separation
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