
Implementing
Decision Diagrams in
Production Systems
DPSOLVE 2023

👋 This is a talk about 🐇 and 🐇🕳

Ryan O’Neil
CTO at Nextmv
Integer scientist, cat and early music
enthusiast, Go programmer

🏃 Speedrun
 Let’s see some Decision Diagrams in the wild!

🤔 Why?
 Decision Diagrams have unique characteristics.

🛠 How?
 How this work and some things we learned building it.

🤷 Q&A time
 You probably have questions. I know I do.

🏃🏃🏃

Speedrun

📈 Daily hosted routing metrics

📈 Cumulative hosted routing

🤔🤔🤔

Why?

Original motivation came from routing at Zoomer.
Work continued at Grubhub Delivery.

Both solved dynamic meal delivery problems.
The biggest difference was scale.

We solve lots of routing (and other) problems at Nextmv.
We’ve had the fortune to test out DDs on some of them!

🍳 Dynamic meal delivery

Orders arrive dynamically throughout the day.

A shared driver pool serves many restaurants.

Multiple orders are consolidated for efficiency.

Problems get large (thousands of orders,
hundreds of drivers).

🚙

🚙

🌯
🍕

🍽
🍽

🍽
🍳 Dynamic meal delivery

People, Meals, Perishable Goods Groceries, Packages, Non-Perishable Goods n

Courier

Pickup

Delivery

🤳 On-demand last-mile is everywhere now

People, Meals, Perishable Goods Groceries, Packages, Non-Perishable Goods n

Courier

Pickup

Delivery

🤳 And speed to operational solutions is important

A
ss

ig
ne

r
R

ou
te

 S
ol

ve
r

Load current
and pending
assignments

Route driver

50 ms

Assign “best”
driver to each
unassigned
order

Plan improvements

30 s

Swap order assignments

Route driver

50 ms

Replan every 30s to 2m for real-time operations.

🍳 Real-time planning often looks like this

Adjacency Matrix (column major)

PA: Slot 1

DA: Slot 3

PB: Slot 2

DB: Slot 6

PC: Slot 4

DC: Slot 5

Slot 1: PA

Slot 2: PB

Slot 3: DA

Slots

Slot 4: PC

Slot 5: DC

Slot 6: DB

10

25

15

Stop Times

45

30

40

10

15

25

Slot Times

30

40

45

4

6

Capacity

4

6

8

6

80Slot 0

Stops

Start0

S PA DA PB DB PC DC

S

PA X

DA X

PB X

DB X

PC X

DC X

🤯 Models can get pretty crazy looking

🙂 In contrast, DDs can seem pretty simple…

Algorithm:

● Do a pickup.
● Do another pickup or a feasible delivery.
● Repeat until done.

🏇 In the right hands, they can even be fast!

🧐 In the now times for
decision and OR ops

Our data looks more like this: But our process looks like this:

● Translate business rules to linear
inequality systems

● Hand off to a solver

● 🤞🙏

● Translate solutions back to
business rules

 "id": "vehicle-10"
 "capacity": 125
 }
],
"stops": [
 {
 "id": "order-1-pickup-1"
 "position": {
 "lon": -96.827094
 "lat": 33.004745
 },
 "precedes": "order-1-dropoff",
 "quantity": -27
 },
 {
 "id": "order-1-dropoff"
 "target_time": "2023-05-25T04:24:20-6:00"

So if we think about optimization as a tool for
solving operational problems on operational data…

…can we build models in a way that’s more natural
to the problem we’re trying to solve?

🌏 Where do DDs live in the world of optimization?

MIP

Mixed integer programming
Strong optimality reasoning

CP

Constraint programming
Strong feasibility reasoning

DDs
Decision diagrams
Good at finding feasible
solutions, can prove optimality

“This is the best solution!” “This is a good, timely solution!” “Here are solutions!”

Somewhere in the middle

🛠🛠🛠

How?

🏆 A solver is an oracle in software…

…most software reads, manipulates, and writes
state data…

…so how can we tell a solver about the data
structures we want, and have it fill in the details?

📖 Hop is a Decision Diagram solver(-ish)

● Hop executes a branch-and-bound over states composed
of arbitrary state data.

● Instead of relaxation diagrams and merge operators, Hop
relies on state expansion.

● Hop supports problem-specific top-down reduction.

● Hop assumes state data is immutable.

👀 Hop’s explores rectangles

SEARCH

Restricted diagram

Selectively explore
some states now and
some states later

👀 Reduce diagrams as we go

INFERENCE

Reduced diagram

Learn as we explore to
avoid unproductive
branches of the search
tree.

👀 Expand states on demand

RELAXATION

State expansion

Create new exact
states as requested
by the search. This
avoids merging wide
layers.

State interface
Any state can be feasible, not just
the terminal node.

For example: a 0-1 knapsack state is
feasible if weight ≤ capacity.

Values need not increase or
decrease monotonically, or be within
bounds.

Bounds only tighten in child states.

Expander interface
An expander generates new states
when requested.

Diagram options include an
expansion limit.

Expansion can be eager or lazy.

Solver interface
A solver sends improving (all)
feasible solutions over a channel as it
finds them, or the best (last) solution
it finds.

A solution is a state with metadata.

Some solvers can also infer. Mosty
this is used for bounds messaging.

Options
Options control diagram creation
(reduction, restriction, expansion).

They also control queue discipline,
selection of deferred nodes in
search, and termination criteria.

⚙ High-level modeling interfaces = “engines”

Let’s look
at some
models.

Hop doesn’t have a modeling language
(yet). We’re still learning what that
should look like.

Let’s dive a bit deeper into the routing
model we saw earlier.

We’ll start with single-vehicle pickup and
delivery, then generalize it to
multi-vehicle.

😅 An extremely simple example

📃 First we’ll look at the “append” model

● This model is a very simple MDD.

● We start at the driver’s location.

● At each layer, we try appending all feasible stops.

● Our transition function accounts for precedence, capacity,
time windows, and other side constraints.

● Let’s look at and exact version of the model…

Can this be reduced?
What does this exact diagram look like if
we apply a standard reduction technique.

Let’s walk through the procedure.

The gray nodes will be reduced.

👌 That’s all well and good

● Bottoms-up reduction generates a lot of states we don’t
always need.

● This is great for compressing solutions, but in this case I’d
prefer not to generate anything I don’t need.

● Is there any way I can reduce the diagram while I’m
constructing it?

😔 There are gotchas here too

● Now I need a domain store…

● Applying this to arbitrary state data requires custom logic
for every model.

● There’s a subtle issue with diagram width here too.

➕ Now let’s look at the “insert” model

● This model is a bit more complex.

● Order the stops somehow (a greedy heuristic works well).

● Start with an empty route: []

● Each layer asks, “at which index do we insert this stop?”

● Again, the transition function accounts for precedence,
capacity, time windows, and other side constraints.

Append Insert

Speed to solution quality ✅
Memory efficiency ✅
Can operate on partial states ✅
Simplicity of implementation ✅
Side constraint simplicity ✅
The hard stuff: synchronization, handoff, containment ✅

💪 Some strengths of the different models

🌎 How do we extend this to a fleet?

● We can also decouple assignment and routing, either in a
single diagram or in multiple.

● Layers correspond to groups of stops that go together.

● Arcs decide which vehicle we assign them to.

🆘 Help! I got stuck in a local optimum!
Can we combine metaheuristics with DDs?

● DD: exact solver, controls search, functions as repair operator
● ALNS: improves on incumbents, only needs destroy operators

🧪 What went well?

● No data translation! Model
directly on operational data.

● Good performance with lots of
side constraints and flexibility

● DD + ALNS fit well together. It
feels like neighborhood search
can fit directly on the diagram.

● Layers and ordering are useful
for inference.

● Custom modeling. Statesplosion.

● Heuristics and reduction are too
problem specific.

● Relaxation techniques hard to
apply to arbitrary data.

● Immutable data isn’t always
great.

💔 What needs work?

🧭 What’s next for Hop?

● Higher level modeling layer, language APIs.

● Tighten definitions of states and transitions. Provide
custom data that doesn’t drive the search.

● Figure out how to combine automatic merging and state
expansion.

● v1 end of year?™

Thoughts?

Thank you!

