Euro Practitioners' Forum

Three model problem

Combining machine learning (ML) and operations research (OR) through horizontal computing

Ryan O'Neil · June 7, 2024

Currently: Nextmv co-founder & CTO

Building a DecisionOps platform for OR practitioners

Previously: Grubhub, Zoomer, MITRE

Led decision engineering teams, built many a model

Likes cats, cellos, and camping

I also make excellent llama jokes in my spare time

- There was machine learning and operations research
- In OR, there emerged stochastic vs. deterministic
- Deterministic modeling became common practice
- ML (with randomness, probabilities, and ranges) matured
- But blending the two disciplines remains challenging

🔨 Let's consider our current methods...

Deterministic

- \rightarrow Repeatable output for a given input
- \rightarrow Defined performance once deployed
- \rightarrow More guarantees about solve time
- \rightarrow More straightforward modeling approach
- \rightarrow Poor at handling uncertainty

Stochastic

- \rightarrow Variable output for a given input
- \rightarrow Performance characteristics less defined
- \rightarrow Fewer guarantees about solve time
- \rightarrow More sophisticated modeling approach
- \rightarrow Great at handling uncertainty

Behind most stochastic algorithms is an exploration of uncertainty through deterministic means.

- We have existing deterministic models today, converting them takes time
- Instead of reformulating the model, what if we added horizontal compute into our deterministic approach?
- Wouldn't be a 1:1 replacement for artisanal stochastic models — more of a no-knead approach of stochastic optimization

Let's dive in and explore...

The three logistics models we'll explore

Demand forecasting

How many orders do I expect based on historical data? Shift scheduling

What shifts do workers need to fill to meet demand? Vehicle routing

What are the routes for each driver to deliver orders?

This is the data flow of our linked problem

Let's focus on forecasting and scheduling

You'll see this in action momentarily...

And now we re-emerge...

- In the database world, we had sharding and events
- In the ML world, there's XGBoost and tons of GPUs
- In the OR world, there's...
 - Russell W. Bent and Pascal Van Hentenryck (2004)
 - Solving very large-scale LPs (e.g., DuaLip)

So why isn't this approach more prevalent?

There are several pieces needed to make this viable and repeatable workflow

ML + OR speedrun

- Stochastic and deterministic modeling are both great
- You can approximate stochasticity with deterministic models
- Horizontal compute and testing infra unlocks that capability
- ML (and uncertainty) and OR should not to be strangers

https://www.linkedin.com/in/ryanjon eil/

in linkedin.com/in/ryanjoneil/

@ryanjoneil

www.nextmv.io

Time for questions

Mextmv