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V) Hello, I'm Ryan O’Neil

Currently: Nextmv co-founder & CTO
Building a DecisionOps platform for OR practitioners

Previously: Grubhub, Zoomer, MITRE

Led decision engineering teams, built many a model

Likes cats, cellos, and camping
| also make excellent llama jokes in my spare time
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L1 Once upon a time...

e There was machine learning and operations research

e In OR, there emerged stochastic vs. deterministic

e Deterministic modeling became common practice

e ML (with randomness, probabilities, and ranges) matured

e But blending the two disciplines remains challenging
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4 Let's consider our current methods...

Deterministic

-> Repeatable output for a given input

- Defined performance once deployed

-> More guarantees about solve time

-> More straightforward modeling approach

-> Poor at handling uncertainty

Stochastic

-> Variable output for a given input

-> Performance characteristics less defined
-> Fewer guarantees about solve time

-> More sophisticated modeling approach

- Great at handling uncertainty

\



Behind most stochastic algorithms is an
exploration of uncertainty through
deterministic means.
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So is there another way?

We have existing deterministic models today, converting
them takes time

Instead of reformulating the model, what if we added
horizontal compute into our deterministic approach?

Wouldn't be a 1:1 replacement for artisanal stochastic
models — more of a no-knead approach of stochastic
optimization
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‘® The three logistics models we'll explore

4 )
Demand forecasting
How many orders do |
expect based on
historical data?

\_ _J

4 )
Shift scheduling
What shifts do workers

need to fill to meet
demand?
\_ J

-

Vehicle routing

What are the routes for
each driver to deliver
orders?
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£ This is the data flow of our linked problem
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(
Demand forecasting
Historical order volume ]
v X tm’ﬂetg
Forecasted order volume }/
Uncertainty &&s
\_
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4 )
Shift scheduling
Required workers
+
Worker availability
Driver shift assignments
. J

-

Vehicle routing
Available drivers
Actual stops (orders)
[ Driver route assignment
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@ Let's focus on forecasting and scheduling
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- stochastic
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Demand forecasting

Historical order volume ]
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Forecasted order volume ]/

Uncertainty &&s
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Shift scheduling

Required workers
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stochastic
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Demand forecasting
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Historical order volume ]
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- deterministic
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Shift scheduling

Required workers

Worker availability
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Driver shift assignments
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Demand forecasting
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Historical order volume ]
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Forecasted order vol 1 + & &

Forecasted order vol 2 + &8s

horizontal

stochastic - deterministic - compute

Shift scheduling
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Required workers 1 + &8

Required workers 2 + @&

Required workers 3 + &8/

Worker availability
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Driver shift assignments 1

Forecasted order vol 3 + &8s

Driver shift assignments 2

Driver shift assignments 3
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horizontal
stochastic - deterministic - compute
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Demand forecasting

Historical order volume ]
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Forecasted order vol 1 + & & ]-’
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~

Forecasted order vol 3 + &8s ]/
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Shift scheduling
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Required workers 1 + &8

R’

Required workers 2 + @&

Required workers 3 + &8/

ensemble
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Worker availability
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Driver shift assignments 1

Driver shift assignments 2

Driver shift assignments 3

ensemble +
consensus
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Demand forecasting

Historical order volume ]
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Forecasted order vol 3 + &8s

horizontal

stochastic - deterministic - compute
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Shift scheduling
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Required workers 1 + &8

Required workers 2 + @&

Required workers 3 + &8/

Worker availability
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Driver shift assignments 1

Driver shift assignments 2

Driver shift assignments 3
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consensus
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ensemble + llllD

consensus

stochast-ometer
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Vehicle routing
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Available drivers

Actual stops (orders)

Driver route assignment
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& You'll see this in action momentarily...

Demand forecasting

= statsmodels

PROCPHET

Google OR-Tools + SCIP
+ LAD

ensemble

Shift scheduling

A\ HIGHS

consensus

Vehicle routing

W nextmv
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'*® This isn't entirely new...

e |n the database world, we had sharding and events

e [nthe ML world, there's XGBoost and tons of GPUs

e Inthe OR world, there's...

o Russell W. Bent and Pascal Van Hentenryck (2004)

o Solving very large-scale LPs (e.g., Dualip)
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&) So why isn't this approach more prevalent?

There are several pieces needed to make this viable and repeatable workflow

Hosting Infra ] [ Observability ][ Stats Analysis

4 N d )

Input sets Model management, sharing
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Orchestration Run history, Iogs] [ Consensus
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ML + OR speedrun
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5> Takeaways

e Stochastic and deterministic modeling are both great
e You can approximate stochasticity with deterministic models
e Horizontal compute and testing infra unlocks that capability

e ML (and uncertainty) and OR should not to be strangers
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https://www.nextmv.io
https://github.com/nextmv-io
https://www.nextmv.io
https://www.linkedin.com/company/nextmv
https://www.nextmv.io
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Time for questions
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